LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - STATISTICS

FIFTH SEMESTER - APRIL 2013

ST 5400 - APPLIED STOCHASTIC PROCESSES

Date: 08/05/2013
Dept. No. \square Max. : 100 Marks

Section-A

Answer all the questions.

1) Define Stochastic Processes.
2) State any two applications of Markov Chain.
3) What is meant by discrete time space?
4) Define Null recurrence.
5) Give an example for Periodicity.
6) What is meant by random walk?
7) Define the term TPM with an example.
8) Briefly explain communication of the states.
9) Define an absorbing state?
10) Define diffusion process

Section-B

($5 \times 8=40$ marks)

Answer any FIVE questions.

11) Explain in detail the applications of the Stochastic Processes.
12) Discuss the Gambler's Ruin problem with an example
13) Explain the following with an example i) Symmetry and ii) Transitivity of communication of states.
14)What is meant by stationary distribution? Explain any two applications..
14) Explain in detail the need for higher order transition probabilities with suitable illustration.
15) Discuss in detail pure birth process.
16) A white rat is put into the maze consisting of 9 compartments. The rat moves through the compartment at random. That is there are k ways to leave a compartment. The rat chooses each of the move with probability $1 / \mathrm{k}$.
a) Construct the Maze
b)The Transition probability matrix
17) State and prove Chapman-Kolmogrov equation.

Section-C

($2 \times 20=40$ marks)

Answer any TWO questions.

19) Discuss in detail the four classifications of the Stochastic Processes with illustrations.
20. a) Show that a Markov Chain is fully determined, when its initial distribution and one step transition probabilities of the Markov chain are known.
b) Explain the social mobility problem. ($12+8$ marks)
21. a) Discuss in detail one dimensional random and two dimensional random walk problems with the TPM .
22. b) If the probability of a HOT day (state-0) following a COOL day (state-1)is $1 / 3$, and that of a cool day following a hot day is $1 / 2$. Find i) Probability that May 3 is a hot day given that May first is a hot day. ii) Probability that May 5 is a cool day given that May first is a hot day.
23. a) Write short notes on Point Process
b) Discuss the applications of basic limit theorem of Markov Chains. (10+10 marks)
